The specific rotation for a pure enantiomer is known to be +158o g-1 mL-1 dm-1. What will be the specific rotation of mixtures containing:

a.
25% of the (+) enantiomer and 75% of the (-) enantiomer,
b.
50% of the (+) enantiomer and 50% of the (-) enantiomer, and,
c.
75% of the (+) enantiomer and 25% of the (-) enantiomer?
Pass the mouse over the "Equation" button to review the equation and the parameters for this problem. Click on the "Answer" button to view the complete solution.












































[a] = a/(c x l)

If the fraction of the (+) enantiomer is x, then (1x) gives the fraction of the (-) enantiomer. For any mixture of the two, the apparent specific rotation will be given by:

x(+[a]) + (1x)(-[a]) = [a]apparent












































Solution:

[a] = a/(c x l)

If the fraction of the (+) enantiomer is x, then (1x) gives the fraction of the (-) enantiomer. For any mixture of the two, the apparent specific rotation will be given by:

x(+[a]) + (1x)(-[a]) = [a]apparent

For these mixtures:

a. 0.25(+158o) + 0.75(-158o) = -79o
b. 0.50(+158o) + 0.50(-158o) = 0o (racemic mixture)
c. 0.75(+158o) + 0.25(-158o) = +79o


















































***